Factores de impacto en el aprendizaje virtual en los estudiantes de la Universidad Católica Boliviana “San Pablo” Regional Cochabamba

Autores/as

DOI:

https://doi.org/10.35319/rw6qr628

Palabras clave:

Aprendizaje virtual, Educación superior, Ecuaciones estructurales, PLS

Resumen

El presente estudio tiene como objetivo general identificar los factores de mayor impacto en el aprendizaje virtual en los estudiantes de la Universidad Católica Boliviana “San Pablo”, Regional Cochabamba (UCBSP-CBA). Para lograr este objetivo, se analizó la relación entre los constructos teóricos del Modelo de aceptación de la tecnología de Davis (1985) y la Teoría del comportamiento planeado de Ajzen (1991). Se encuestó a un total de 742 estudiantes de pregrado de la UCBSP- CBA. Los resultados de esta encuesta se analizaron mediante la técnica de ecuaciones estructurales PLS-SEM, que ayudó a dar respuesta a las hipótesis planteadas. Los resultados demostraron que el control conductual, la utilidad percibida y la norma subjetiva tienen impacto positivo en la adaptación del aprendizaje virtual, pero la actitud tiene un impacto negativo en la misma.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Samuel Israel Goyzueta Rivera, Universidad Privada del Valle

    Posee el grado académico de Doctor. Actualmente se desempeña como Director del Departamento Académico de Ciencias Empresariales en la Universidad Privada del Valle. Su trayectoria académica y profesional se enfoca en el fortalecimiento de la educación superior en el área empresarial, impulsando procesos de innovación, investigación y desarrollo de competencias en gestión y administración.

  • Adhemar Marco Poma Chuquimia, Universidad Privada del Valle

    Doctor en su área de especialización y se desempeña como Director de Empiria Consultores. Su experiencia profesional combina la docencia universitaria, la investigación aplicada y la consultoría estratégica en áreas como economía, políticas públicas y desarrollo organizacional. Ha liderado diversos proyectos enfocados en análisis económico y planificación institucional.

Referencias

Ajzen, I. (1985). From intentions to actions: a theory of planned behaviour. In Action Control. Recuperado en: https://doi.org/10.1007/978-3-642-69746-3_2

Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes. Recuperado en: https://doi.org/10.1016/0749-5978(91)90020-T

Ajzen, I. (2002). Perceived behavioral control, self efficacy, locus of control, and the Theory of Planned Behavior. Journal of Applied Social Psychology. Recuperado en: https://doi.org/10.1111/j.1559-1816.2002.tb00236.x

Ajzen, I. (2005). Attitudes, personality, and behavior.

Ajzen, I. (2011). The theory of planned behaviour: Reactions and reflections. Psychology & Health. Recuperado en: https://doi.org/10.1080/08870446.2011.613995

Ajzen, I., & Driver, B. L. (1992). Application of the theory of planned behavior to leisure choice. Journal of Leisure Research. Recuperado en: https://doi.org/10.1080/00222216.1992.11969889

Ajzen, J. & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. New Jersey, United States: Prentice‑Hall.

Baker, E. W., Al Gahtani, S. S. & Hubona, G. S. (2007). The effects of gender and age on new technology implementation in a developing country. Information Technology & People. Recuperado en: https://doi.org/10.1108/09593840710839798

Bandura, A. (1986). The explanatory and predictive scope of self‑efficacy theory. Journal of Social and Clinical Psychology. Recuperado en: https://doi.org/10.1521/jscp.1986.4.3.359

Barclay, D. W., Higgins, C. A. & Thompson, R. (1995). The partial least squares approach to causal modeling: personal computer adoption and use as an illustration. Technology Studies (Special Issue on Research Methodology).

Bobsin, D., Visentini, M. S. & Rech, I. (2009). Em busca do estado da arte do UTAUT: ampliando as considerações sobre o uso da tecnologia. INMR‑Innovation & Management Review.

Carr Jr, V. H. (1999). Technology adoption and diffusion.* The Learning Center for Interactive Technology.

Chang, S. C. & Tung, F. C. (2008). An empirical investigation of students’ behavioural intentions to use the online learning course websites. British Journal of Educational Technology. Recuperado en: https://doi.org/10.1111/j.1467-8535.2007.00742.x

Cheng, Y. M. (2011). Antecedents and consequences of e‑learning acceptance. Information Systems Journal. Recuperado en: https://doi.org/10.1111/j.1365-2575.2010.00356.x

Cheng, Y. M. (2012). Effects of quality antecedents on e‑learning acceptance. Internet Research. Recuperado en: https://doi.org/10.1108/10662241211235699

Cheng, B., Wang, M., Moormann, J., Olaniran, B. A. & Chen, N. S. (2012). The effects of organizational learning environment factors on e‑learning acceptance. Computers & Education. Recuperado en: https://doi.org/10.1016/j.compedu.2011.10.014

Cheung, R. & Vogel, D. (2013). Predicting user acceptance of collaborative technologies: An extension of the technology acceptance model for e‑learning. Computers & Education. Recuperado en: https://doi.org/10.1016/j.compedu.2012.12.003

Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In Modern Methods for Business Research.

Chin, W. W. (2000). Frequently asked questions – partial least squares y PLS‑Graph. Home Page.

Chinyamurindi, W. & Shava, H. (2015). An investigation into e‑learning acceptance and gender amongst final year students. South African Journal of Information Management. Recuperado en: https://doi.org/10.4102/sajim.v17i1.635

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2ª ed.). New Jersey: Erlbaum.

Compeau, D. R. & Higgins, C. A. (1995). Computer self‑efficacy: Development of a measure and initial test. Recuperado en: https://doi.org/10.2307/249688

Davis, F. D. (1985). A technology acceptance model for empirically testing new end‑user information systems: Theory and results (Tesis doctoral, MIT). Recuperado en: https://dspace.mit.edu/bitstream/1721.1/15192/14927137-MIT.pdf

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. Recuperado en: https://doi.org/10.2307/249008

Davis, F. D., Bagozzi, R. P. & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Recuperado en: https://doi.org/10.1287/mnsc.35.8.982

Davis, F. D., Bagozzi, R. P. & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Recuperado en: https://doi.org/10.1111/j.1559-1816.1992.tb00945.x

Davis, F. D. & Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: three experiments. International Journal of Human-Computer Studies. Recuperado en: https://doi.org/10.1006/ijhc.1996.0040

Dijkstra, T. K. & Henseler, J. (2015). Consistent partial least squares path modeling. Recuperado en: https://doi.org/10.25300/MISQ/2015/39.2.02

Escobar‑Rodriguez, T. & Monge‑Lozano, P. (2012). The acceptance of Moodle technology by business administration students. Computers & Education, 58(4), 1085–1093. Recuperado en: https://doi.org/10.1016/j.compedu.2011.11.012

Farahat, T. (2012). Applying the technology acceptance model to online learning in the Egyptian universities. Procedia – Social and Behavioral Sciences. Recuperado en: https://doi.org/10.1016/j.sbspro.2012.11.012

Fathema, N., Shannon, D. & Ross, M. (2015). Expanding The Technology Acceptance Model (TAM) to Examine Faculty Use of Learning Management Systems (LMSs) In Higher Education Institutions. Journal of Online Learning & Teaching. Recuperado en: https://jolt.merlot.org/Vol11no2/Fathema_0615.pdf

Fishbein, M. & Ajzen, J. (1975). Belief, attitude, intention, and behavior: an introduction to theory and research. United States: Addison‑Wesley.

Fishbein, M. & Cappella, J. (2006). The role of theory in developing effective health communications. Journal of Communication. Recuperado en: https://doi.org/10.1111/j.1460-2466.2006.00280.x

Fornell, C. & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research. Recuperado en: https://doi.org/10.2307/3151312

Garavan, T., Carbery, R., O'Malley, G. & O'Donnell, D. (2010). Understanding participation in e‑learning in organizations: a large scale empirical study of employees. Recuperado en: https://doi.org/10.1111/j.1468-2419.2010.00349.x

Gefen, D., Karahanna, E. & Straub, D. (2003). Trust and TAM in online shopping: An integrated model.

Gist, M. E., Schwoerer, C. & Rosen, B. (1989). Effects of alternative training methods on self‑efficacy and performance in computer software training. Journal of Applied Psychology. Recuperado en: https://doi.org/10.1037/0021-9010.74.6.884

Gu, J.‑C., Lee, S.‑C. & Suh, Y. (2009). Determinants of behavioral intention to mobile banking. Expert Systems with Applications. Recuperado en: https://doi.org/10.1016/j.eswa.2009.03.024

Han, H. & Kim, Y. (2010). An investigation of green hotel customers’ decision formation: developing an extended model of the theory of planned behavior. Recuperado en: https://doi.org/10.1016/j.ijhm.2010.01.001

Hair Jr, J. F., Hult, G. T. M., Ringle, C. & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling.

Hair, J. F., Hult, G. T., Ringle, C. M., Sarstedt, M., Castillo Apraiz, J., Cepeda Carrión, G. & Roldan, J. L. (2019). Manual de partial least squares structural equation modeling. Recuperado en: https://doi.org/10.3926/oss.37

Haverila, M. & Barkhi, R. (2009). The influence of experience, ability and interest on eLearning effectiveness. European Journal of Open, Distance and E‑Learning.

Hernández, R., Fernández, C. & Baptista, M. (2014). Metodología de la Investigación (6ta ed.). México: McGraw‑Hill.

Henseler, J., Ringle, C. M. & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance‑based structural equation modeling. Journal of the Academy of Marketing Science. Recuperado en: https://doi.org/10.1007/s11747-014-0403-8

Hew, K. F. & Cheung, W. S. (2014). Students’ and instructors’ use of massive open online courses (MOOCs): motivations and challenges. Educational Research Review. Recuperado en: https://doi.org/10.1016/j.edurev.2014.05.001

Hock, C., Ringle, C. M. y Sarstedt, M. (2010). Management of multi-purpose stadiums: Importance and performance measurement of service interfaces. International Journal of Services Technology and Management. (Recuperado en: https://doi.org/10.1504/IJSTM.2010.034327)

Holmes, B. y Gardner, J. (2006). E-learning: Concepts and practice. United States: SAGE Publications. Recuperado en: http://dx.doi.org/10.4135/9781446212585

Hong, S., Thong, J. Y. L. y Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems. Recuperado en: http://dx.doi.org/10.1016/j.dss.2006.03.009

Hsu, M. H., Yen, C. H., Chiu, C. M. y Chang, C. M. (2006). A longitudinal investigation of continued online shopping behavior: An extension of the theory of planned behavior. International Journal of Human–Computer Studies. Recuperado en: http://dx.doi.org/10.1016/j.ijhcs.2006.04.004

Issa, I. y Hamm, U. (2017). Adoption of organic farming as an opportunity for Syrian farmers of fresh fruit and vegetables: An application of the Theory of Planned Behaviour and Structural Equation Modelling. Recuperado en: https://doi.org/10.3390/su9112024

Kim, Gi., Shin, Bongsik y Lee, Ho. (2009). Understanding dynamics between initial trust and usage intentions of mobile banking. Information System Journal, 19, 283-311. Recuperado en: https://doi.org/10.1111/j.1365-2575.2007.00269.x

Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research. Recuperado en: https://pubsonline.informs.org/doi/10.1287/isre.13.2.205.83

Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education. Recuperado en: http://dx.doi.org/10.1287/isre.13.2.205.83

Lee, Y. H., Hsieh, Y. C. y Hsu, C. N. (2011). Adding innovation diffusion theory to the technology acceptance model: Supporting employees’ intentions to use e-learning systems. Journal of Educational Technology & Society. Recuperado en: https://www.irmbrjournal.com/papers/1495453550.pdf

Leonard, M., Graham, S. y Bonacum, D. (2004). The human factor: The critical importance of effective teamwork and communication in providing safe care. BMJ Quality & Safety. Recuperado en: http://dx.doi.org/10.1136/qshc.2004.010033

Liaw, S. S., Huang, H. M. y Chen, G. D. (2007). Surveying instructor and learner attitudes toward e-learning. Computers & Education. Recuperado en: https://doi.org/10.1016/j.compedu.2006.01.001

Lin, P. C., Lu, H. K. y Liu, S. C. (2013). Towards an education behavioral intention model for e-learning systems: An extension of UTAUT. Journal of Theoretical & Applied Information Technology. Recuperado en: http://www.jatit.org/volumes/Vol47No3/37Vol47No3.pdf

Liu, Y. y Chen, N. S. (2008). An adoption model for mobile learning. Proceeding for the International Conference E-Commerce. Recuperado en: https://www.academia.edu/2957988/An_adoption_model_for_mobile_learning

Luarn, P. y Lin, H. H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in Human Behavior, 21, 873-891. Recuperado en: http://dx.doi.org/10.1016/j.chb.2004.03.003

Ma, J., Hipel, K. W., Hanson, M. L., Cai, X. y Liu, Y. (2018). An analysis of influencing factors on municipal solid waste source-separated collection behavior in Guilin, China by using the Theory of Planned Behavior. Recuperado en: https://doi.org/10.1016/j.scs.2017.11.037

Malhotra, N. (2008). Investigación de mercados (5ta ed.). México: Pearson Prentice Hall.

Melo, A., Ayaviri-Panozo, A. y Rocha, M. (2018). Adaptation of the curriculum to the entrepreneurial intention: A study through the analysis of the performance-importance map (IPMA). 10th International Symposium on Project Approaches in Engineering Education. Recuperado en: https://www.researchgate.net/publication/323543267

Mouakket, S. y Bettayeb, A. M. (2015). Investigating the factors influencing continuance usage intention of learning management systems by university instructors. International Journal of Web Information Systems. Recuperado en: https://doi.org/10.1108/IJWIS-03-2015-0008

Moore, G. C. y Benbasat, I. (1996). Integrating Diffusion of Innovations and Theory of Reasoned Action models to predict utilization of information technology by end-users. Recuperado en: https://doi.org/10.1007/978-0-387-34982-4_10

Musa, P. F. (2006). Making a case for modifying the technology acceptance model to account for limited accessibility in developing countries. Information Technology for Development. Recuperado en: https://doi.org/10.1002/itdj.20043

Nunnally, J. y Bernstein, I. (1994). Psychometric theory. Recuperado en: https://doi.org/10.1177/014662169501900308

Obringer Lee, Ann (2002). How e-learning works. Recuperado en: https://people.howstuffworks.com/elearning.htm

Oye, D., Iahad, N. y Ab. Rahim, N. Z. (2012). The impact of UTAUT model and ICT theoretical framework on university academic staff: Focus on Adamawa State University, Nigeria. International Journal of Computers & Technology. Recuperado en: https://rajpub.com/index.php/ijct/article/view/2640

Parasuraman, A. (2000). Technology Readiness Index (TRI): A multiple-item scale to measure readiness to embrace new technologies. Recuperado en: https://doi.org/10.1177/109467050024001

Park, S. (2009). An analysis of the technology acceptance model in understanding university students’ behavioural intention to use e-learning. Education Technology & Society. Recuperado en: https://www.jstor.org/stable/jeductechsoci.12.3.150

Pattansheti, M., Kamble, S. S., Dhume, S. M. y Raut, R. D. (2016). Development, measurement and validation of an integrated technology readiness acceptance and planned behaviour model for Indian mobile banking industry. Recuperado en: https://www.inderscienceonline.com/doi/abs/10.1504/IJBIS.2016.076875

Quezada, C. (2007). Potencia estadística, sensibilidad y tamaño de efecto: ¿Un nuevo canon para la investigación? Recuperado en: https://dialnet.unirioja.es/descarga/articulo/2554283.pdf

Ringle, C. M. y Sarstedt, M. (2016). Gain more insight from your PLS-SEM results: The importance-performance map analysis. Industrial Management & Data Systems. Recuperado en: https://doi.org/10.1108/IMDS-10-2015-0449

Rogers, E. M. (1995). Diffusion of innovations: Modifications of a model for telecommunications. Recuperado en: https://doi.org/10.1007/978-3-642-79868-9_2

Roldán, J. L. y Cepeda, G. (2016). Modelos de ecuaciones estructurales basados en la varianza: Partial Least Squares (PLS) para investigadores en ciencias sociales. Recuperado en: https://www.anuies.mx/media/docs/avisos/pdf/180403135359Folleto%2BPartial%2BLeast%2BSquares%2B-%2BVF3.pdf

Salloum, S. A. S. (2018). Investigating students’ acceptance of e-learning system in higher educational environments in the UAE: Applying the extended technology acceptance model (TAM). Recuperado en: https://www.researchgate.net/publication/327418762

Samaradiwakara, G. D. M. N. y Gunawardena, C. G. (2014). Comparison of existing technology acceptance theories and models to suggest a well improved theory/model. International Technical Sciences Journal. Recuperado en: https://enos.itcollege.ee/~edmund/inf-hw/seminaritoo/itsj-spec-1-1-3.pdf

Santos, D., Veiga, R. y Moura, L. (2010). Teoria do comportamento planejado decomposto: Determinantes de utilização do serviço mobile-banking. Revista Organizações em Contexto. Recuperado en: https://www.redalyc.org/articulo.oa?id=534256505004

Sharma, S., Hasteer, N., Mishra, S. P. y Van Belle, J. P. (2016, octubre). Identifying the contextual relationship among the agile adoption factors through interpretive structural modeling. International Conference on Information Technology. Recuperado en: https://doi.org/10.1109/INCITE.2016.7857596

Simon, M. K. y Goes, J. (2011). Correlational research. Includes excerpts from Simon. Recuperado en: http://dissertationrecipes.com/wpcontent/uploads/2011/04/Correlational-ResearchX.pdf

Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science. Recuperado en: https://doi.org/10.1287/mnsc.42.1.85

Tamrakar, A. y Metha, K. (2011). Analysis of effectiveness of web-based e-learning. International Journal of Soft Computing and Engineering (IJSCE).

Taylor, S. y Todd, P. (1995). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International Journal of Research in Marketing. Recuperado en: https://doi.org/10.1016/0167-8116(94)00019-K

Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I. y Martina, F. (2016). Design for additive manufacturing: Trends, opportunities, considerations, and constraints. Recuperado en: https://doi.org/10.1016/j.cirp.2016.05.004

Vallerand, R. J. (1997). Toward a hierarchical model of intrinsic and extrinsic motivation. Advances in Experimental Social Psychology. Recuperado en: https://doi.org/10.1016/S0065-2601(08)60019-2

Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating perceived behavioral control, computer anxiety and enjoyment into the technology acceptance model. Information Systems Research. Recuperado en: https://doi.org/10.1287/isre.11.4.342.11872

Venkatesh, V. y Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science. Recuperado en: https://doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., Thong, J. Y. y Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. Recuperado en: https://doi.org/10.2307/41410412

Wagner, E. D. (2005). Enabling mobile learning. Recuperado en: https://www.learntechlib.org/p/99141/

Xie, Q., Song, W., Peng, X. y Shabbir, M. (2017). Predictors for e-government adoption: Integrating TAM, TPB, trust and perceived risk. Recuperado en: https://doi.org/10.1108/EL-08-2015-0141

Impact factors of e-learning in students of Universidad Católica Boliviana San Pablo Regional Cochabamba

Descargas

Publicado

2021-05-30

Número

Sección

Artículos de investigación

Cómo citar

Factores de impacto en el aprendizaje virtual en los estudiantes de la Universidad Católica Boliviana “San Pablo” Regional Cochabamba. (2021). Revista Perspectivas, 47, 33-72. https://doi.org/10.35319/rw6qr628

Artículos similares

1-10 de 57

También puede Iniciar una búsqueda de similitud avanzada para este artículo.